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AdministrativeAdministrative
Midterm will be given Thursday 10/29 in class

Focus on classi�cation problems (More details on Tuesday; review sheet)
Read data, clean data, �lter data, standardize data, model data, evaluate
model with plots
Open book, note, internet - no chatting with other students

Changing groups: After the midterm we will put you in new groups for the rest of the
semester.

We will try to keep you with at least one other person from your current
group.

Please complete this MidSemester survey: 

Homework 2 is graded; people did rather well. Well done!!!

www.egr.msu.edu/mid-semester-
evaluation (https://www.egr.msu.edu/mid-semester-evaluation)

https://www.egr.msu.edu/mid-semester-evaluation


From Pre-Class AssignmentFrom Pre-Class Assignment

Useful bitsUseful bits
Making the data was relatively straightforward
I was reminded about how to make a 3D plot and got it working

Challenging bitsChallenging bits
I was not able to make the 3D plot
I don't quite understand what the SVM is doing when it makes dimensions
I was unable to separate the ciruclar data



Reminder of the ML ParadigmReminder of the ML Paradigm

We do not expect you in this class to learn every detail of the models.



Support Vector MachinesSupport Vector Machines
As a classi�er, an SVM creates new dimensions from the original data, to be able to
seperate the groups along the original features as well as any created dimensions.
The kernel that we choose tells us what constructed dimensions are available to us.

We will start with a linear kernel, which tries to construct hyper-planes to seperate
the data.

For 2D, linearly separable data, this is just a line.

We are now going to use a new kernel: RBF, this will create new dimensions that
aren't linear. You do not need to know the details of how this works (that is for later
coursework).

We use make_circles  because it gives us control over the data and it's separation; we
don't have to clean or standardize it.



Let's make some circlesLet's make some circles



In [6]: ##imports 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
from sklearn.datasets import make_circles 
from sklearn.svm import SVC 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report, confusion_matrix, roc_curve, ro
c_auc_score 

X,y = make_circles(n_samples = 100, random_state = 3) 

## Plot Circles 
plt.scatter(X[:,0], X[:,1], c=y) 
plt.xlabel(r'$x_0$'); plt.ylabel(r'$x_1$') 

Out[6]: Text(0, 0.5, '$x_1$')



Let's look at the data in 3DLet's look at the data in 3D
In [9]: fig = plt.figure(figsize = (10, 7)) 

ax = plt.axes(projection ="3d") 

ax.scatter3D(X[:,0], X[:,1], 0, c=y) 

Out[9]: <mpl_toolkits.mplot3d.art3d.Path3DCollection at 0x7ff7d85f8fd0>



Let's make a little more dataLet's make a little more data
In [10]: X,y = make_circles(n_samples = 1000, random_state = 3) 

## Plot Blobs 
plt.scatter(X[:,0], X[:,1], c=y) 
plt.xlabel(r'$x_0$'); plt.ylabel(r'$x_1$') 

Out[10]: Text(0, 0.5, '$x_1$')



Let's train up a linear SVMLet's train up a linear SVM
This is what we did last class; but now we have split the data

In [12]: ## Split the data 
train_vectors, test_vectors, train_labels, test_labels = train_test_split(X, y, te
st_size=0.25) 

## Fit with a linear kernel 
cls = SVC(kernel="linear", C=10) 
cls.fit(train_vectors,train_labels) 

## Print the accuracy 
print('Accuracy: ', cls.score(test_vectors, test_labels)) 

Accuracy:  0.44 



Let's check the report and confusion matrixLet's check the report and confusion matrix
We want more details than simply accuracy

In [14]: ## Use the model to predict 
y_pred = cls.predict(test_vectors) 

print("Classification Report:\n", classification_report(test_labels, y_pred)) 

print("Confusion Matrix:\n", confusion_matrix(test_labels, y_pred)) 

Classification Report: 
               precision    recall  f1-score   support 
 
           0       0.45      0.43      0.44       129 
           1       0.43      0.45      0.44       121 
 
    accuracy                           0.44       250 
   macro avg       0.44      0.44      0.44       250 
weighted avg       0.44      0.44      0.44       250 
 
Confusion Matrix: 
 [[55 74] 
 [66 55]] 



Let's look at the ROC curve and compute the AUCLet's look at the ROC curve and compute the AUC
In [15]: ## Construct the ROC and the AUC 

fpr, tpr, thresholds = roc_curve(test_labels, y_pred) 
auc = np.round(roc_auc_score(test_labels, y_pred),3) 

plt.plot(fpr,tpr) 
plt.plot([0,1],[0,1], 'k--') 
plt.xlabel('FPR'); plt.ylabel('TPR'); plt.text(0.6,0.2, "AUC:"+str(auc)); 



The Linear Kernel Absolutely Failed!The Linear Kernel Absolutely Failed!

Let's use RBF instead and see what happensLet's use RBF instead and see what happens
1. Train the model
2. Test the model
3. Evalaute the model: accuracy, scores, confusion matrix, ROC, AUC



Train the model and start evaluating itTrain the model and start evaluating it
In [16]: ## Fit with a RBF kernel 

cls_rbf = SVC(kernel="rbf", C=10) 
cls_rbf.fit(train_vectors,train_labels) 

## Print the accuracy 
print('Accuracy: ', cls_rbf.score(test_vectors, test_labels)) 

Accuracy:  1.0 



Use the model to predict and report outUse the model to predict and report out
In [17]: ## Use the model to predict 

y_pred = cls_rbf.predict(test_vectors) 

print("Classification Report:\n", classification_report(test_labels, y_pred)) 

print("Confusion Matrix:\n", confusion_matrix(test_labels, y_pred)) 

Classification Report: 
               precision    recall  f1-score   support 
 
           0       1.00      1.00      1.00       129 
           1       1.00      1.00      1.00       121 
 
    accuracy                           1.00       250 
   macro avg       1.00      1.00      1.00       250 
weighted avg       1.00      1.00      1.00       250 
 
Confusion Matrix: 
 [[129   0] 
 [  0 121]] 



Construct the ROC and the AUCConstruct the ROC and the AUC
In [18]: ## Construct the ROC and the AUC 

fpr, tpr, thresholds = roc_curve(test_labels, y_pred) 
auc = np.round(roc_auc_score(test_labels, y_pred),3) 

plt.plot(fpr,tpr) 
plt.plot([0,1],[0,1], 'k--') 
plt.xlabel('FPR'); plt.ylabel('TPR'); plt.text(0.6,0.2, "AUC:"+str(auc)); 



TodayToday
We are going to use SVM with real data. We are going to use the linear kernel again,
but you can change to RBF (it will take much longer to run).
We are also going to introduce hyper-parameter optimization and grid searching
(again takes more time)

In the construction of the SVM: cls = svm.SVC(kernel="linear", C=10) , C  is a

hyperparameter that we can adjust. sklearn  has a mechanism to do this automatically

via a search and �nd the "best" choice: GridSearchCV .

Please ask lots of questions about what the code is doing today because you are not
writing a lot of code today!



Questions, Comments, Concerns?Questions, Comments, Concerns?


